

Targeted Applications as Inspirations to Develop Strategies toward Functionally-sophisticated Nanoscopic Macromolecules with Diverse Compositions, Structures, and Properties

A few functional polymer chemistry goals:

- Antimicrobial nanoparticles for infectious disease treatment
- Chemotherapeutic nanoparticles for treatment of osteosarcoma lung metastases
- Engineering polymers derived from natural products
- Anti-biofouling and anti-icing coatings
- Advanced photoresist technologies

Silver-loaded Shell Crosslinked Nanoparticles for Antimicrobial Studies: Infectious disease treatments

Objective: To deliver anti-infective agents directly to the sites of origin of infectious diseases (lung and urinary tract) by using antimicrobial-bearing SCK nanoparticles—convenient routes of administration

Lung Infections (*P. aeruginosa*)

http://www.medinik.com/cancer/lung-cancer-symptoms

[Yali Li and Lily Yun Lin, w/Hunstad, Cannon, Youngs]

FimH is the most common adhesin protein of *E. coli* and other enteric bacteria, which binds to mannose residues presented from epithelial cell surfaces

http://www.healthandage.com/html/res/primer/pics/k3bladder.gif http://www.itb.uni-stuttgart.de/gfx/analytical/expec_3.jpg

SCK Nanomaterials Designed for Antimicrobial or Nucleic Acids **Delivery to Treat Pulmonary Diseases**

1st Generation Non-degradable SCKs for Ag-based Antimicrobial Delivery for Treatment of Lung Infection

Li, Y.; Hindi, K.; Watts, K. M.; Taylor, J. B.; Zhang, K.; Li, Z.; Hunstad, D. A.; Cannon, C. L.; Youngs, W. J.; Wooley, K. L. *Chem. Commun.*, **2010**, *46*(1), 121-123.

In vitro Efficacy Reduced for Silver Loaded within SCKs

Ă M

Inhibition of growth of *E. coli* strain
 UTI89 (a) and *P. aeruginosa* strain
 PAM57-15 (b) by silver-bearing
 nanoparticles and AgNO₃.

SCKs with no loaded silver had no antimicrobial activity.

☆Activity of the silver-bearing nanoparticles was generally inferior to that of naked AgNO₃ by ≤1 two-fold dilution in inhibition of bacterial growth, suggesting near-equivalence in the availability of silver for antimicrobial action.

Li, Y.; Hindi, K.; Watts, K. M.; Taylor, J. B.; Zhang, K.; Li, Z.; Hunstad, D. A.; Cannon, C. L.; Youngs, W. J.; Wooley, K. L. *Chem. Commun.*, **2010**, 121-123

Efficacy of Novel Small Molecule Antimicrobial: SCC1

P. aeruginosa inoculation: 1.0 x 10⁶ CFU PA M57-15 IN per mouse Five nebulized dose treatments, every 12 h 100 Percent survival 80. 60. Sham 10 mg SCC1 40-20 mg SCC1 20. 40 mg SCC1 20 mg Tobramycin 0 12 24 36 48 60 72 0 Hours

Water solubility: 10 mg/mL 2.88 mg Ag per 10 mg SCC1

	Ag Conc. (mg)	Survival percentage	
Tobramycin	40*	100%	
40 mg SCC1	11.52	80%	
20 mg SCC1	5.76	67%	
10 mg SCC1	2.88	60%	
Sham (water)	0	0%	

*Tobramycin concentration

For a 60% survival advantage, 2.88 mg Ag⁺ delivered 2x daily for 5 doses (14.4 mg Ag total) were required

Anticipated advantage of nanoparticles: redirect pharmacokinetics

[Carolyn Cannon, UTSW]

Silver-loaded SCKs Demonstrated Greater Therapeutic Effects than Small Molecule Silver Carbene Complexes Alone

Shah, P. N.; Lin, L. Y.; Smolen, J. A.; Tagaev, J. A.; Gunsten, S. P.; Han, D. S.; Heo, G. S.; Li, Y.; Zhang, F.; Zhang, S.; Wright, B. D.; Panzner, M. J.; Youngs, W. J.; Brody, S. L.; Wooley, K. L.; Cannon, C. L. *ACS Nano*, **2013**, *7*(6), 4977-4987.

A Degradable Polyphosphoester-based System Gives Higher Ag⁺ Loading and Greater Solution-state Stability vs. 1st Generation SCK System

COO-

COO.

Interaction

Stability in 150 mM PBS

Polymer concentration

Silver Concentration

Ag COO

Degradable loading system

10 mg/mL

0.5 – 1.0 mg/mL (and even higher)

Non-degradable system

precipitates form immediately

0.25 mg/mL

0.080 - 0.120 mg/mL

The Enhanced Therapeutic Efficacy may be due (in part) to Greater Lung Retention for the Nanoparticles

> ^{[111}Ag] Particles Biodistribution @ 1hr %ID/g-mice dose

ĀМ

The Enhanced Therapeutic Efficacy may be due (in part) to Greater Lung Retention for the Nanoparticles

> [¹¹¹Ag] Particles Lung Biodistribution @ different time points

Two New Generation Degradable, Functional Polymers for Construction of Silver-loaded Nanoparticle Therapeutics

Polyphosphoester-based backbone

[Fuwu Zhang and Richen Li]

Poly(phosphoester-b-lactide) system

[Young Lim and Gyu Seong Heo]

A Series of Degradable Particles That Exhibit Different Antimicrobial Agent Loading/Release Characteristics, Designed for Treatment of Lung Infections

<Ag loading/release>

Efficacy of Ag+-loaded SCK in vivo

Strategy to Treat Recurrent Urinary Tract Infections (UTI) by Hijacking Biological Aspects Involved in the Pathogenesis

Mysorekar et al., 2006; Hung et al., 2009; Hunstad et al., 2010

UTI: FimH_A bacterial adhesin-facilitated invasion of bladder epithelial cells

• Binding and invasion of bladder epithelial cells through type 1 pili

FimH_A has a binding pocket that binds **mannose moieties** of uroplakin expressed on epithelial cells (w/~16 nm spacings between mannose sites across 50-100 μm epithelial cell)

FimH_A has four **lysine groups for functionalization** onto the SCK to **emulate** the bacterial mode of invasion

Mulvey, M. A.; Wilson, C. L.; Roth, R.; Parks, W. C.; Heuser, J.; Hultgren, S. J. Science **1998**, 282, 1494. Hung, C. S.; Bouckaert, J.; Hung, D.; Pinkner, J.; Widberg, C.; DeFusco, A.; Auguste, C. G.; Strouse, R.; Langermann, S.; Waksman, G.; Hultgren, S. J. *Mol. Microbiol.* **2002**, *44*, 903.

Synthetic polymer nanoparticles functionalized with FimH_A emulate the bacterial mode of epithelial internalization

Confocal fluorescence microscopy demonstrated binding and internalization of bladder epithelial cells

Scale bar, 20 µm

- By fluorescence microscopy, the association of SCKs with the cell surfaces was shown to be dose dependent, FimH_A specific, and inhibited by addition of mannose
- Ongoing studies are investigating SCK size and shape effects, including therapeutically-loaded, degradable nanoparticles

Lin, L. Y.; Tiemann, K. M.; Li, Y.; Pinkner, J. S.; Walker, J. N.; Hultgren, S. J.; Hunstad, D. A.; and Wooley, K. L., J. Am. Soc. Chem., 2012, 134(9), 3938-3941.

Future Nanostructures for UTI Treatment Studies

Spherical *vs.* cylindrical *vs.* dumbbell dimensions and selective chemistry are to be used with FimH_A conjugation to optimize the effects of size, shape and FimH_A spacing to emulate bacterial cell internalization by binding to mannose moieties of uroplakin expressed on epithelial cells

Lin, L. Y.; Tiemann, K. M.; Li, Y.; Pinkner, J. S.; Walker, J. N.; Hultgren, S. J.; Hunstad, D. A.; and Wooley, K. L., J. Am. Soc. Chem., 2012, 134(9), 3938-3941.

center of each

Polymer Chemistry, Chem 466, Spring 2014, April 24, 2014

with defined tuning)

Chemical Control is Critical to Any Strategy That Intends to Construct Sophisticated Functional Materials

A few functional polymer chemistry goals:

- Antimicrobial nanoparticles for infectious disease treatment
- Chemotherapeutic nanoparticles for treatment of osteosarcoma lung metastases
- Engineering polymers derived from natural products
- Anti-biofouling and anti-icing coatings
- Advanced photoresist technologies

Koshkina, N. V.; Kleinerman, E. S.; Waldrep, C.; Jia, S.-F.; Worth, L. L.; Gilbert, B. D.; Knight, V. *Clin. Cancer Res.* **2000**, *6*, 2876-2880.

"...drugs delivered to the respiratory tract in liposomal formulation resulted in high pulmonary drug concentration, reduced systemic toxicity, and reduced dosage requirements compared with parenteral and oral administration."

And, "...L-9NC (liposomal 9-nitrocamptothecin) aerosol therapy is effective in the treatment of melanoma and osteosarcoma pulmonary metastases in mice."

Physically- or Covalently-loaded PTX Micelles and SCKs: Degradable polyphosphoester (PPE) block copolymer design

Polymer Chemistry, Chem 466, Spring 2014, April 24, 2014

Design and Synthesis of Polymeric Nanoparticles for the Treatment of Osteosarcoma Lung Metastases

Physically-loaded PTX Nanosystems Micelles SCKs $(D_h)_n = 14 \pm 4 \text{ nm} \text{ and } 24 \pm 6 \text{ nm}$ PTX conc. *ca*. 5 mg/mL PTX release $t_{\frac{1}{12}} = 6.5 \text{ h} \text{ and } 12 \text{ h}$

Covalently-conjugated PTX Nanosystems G1 Micelles $(D_h)_n = 26 \pm 7 \text{ nm} \text{ and } 114 \pm 31 \text{ nm}$ PTX conc. >6 mg/mL and >0.7 mg/mL PTX release t_{1/2} = unknown and >100 h

Zou, J.; Zhang, F.; Zhang, S.; Pollack, S. F.; Elsabahy, M.; Fan, J.; Wooley, K. L. *Adv. Healthcare Mater.*, **2014**, *3*(3), 441-448

Zhang, S.; Zou, J.; Elsabahy, M.; Karwa, A.; Li, A.; Moore, D. A.; Dorshow, R. B.; Wooley, K. L. *Chem. Sci.*, **2013**, *4*, 2122-2126

Comparable in vitro Cytotoxicities to Taxol

	IC ₅₀ (μΜ)			
Formulation	CCH-OS-O	CCH-OS-D	OVCAR-3	RAW 264.7
Taxol	0.0281 ± 0.001	0.1291 ± 0.004	0.005 ± 0.002	0.04 ± 0.01
PTX-Micelles	0.0283 ± 0.001	0.0598 ± 0.02	0.015 ± 0.010	0.10 ± 0.04
PTX-SCKs	0.0141 ± 0.001	NA	0.010 ± 0.008	0.08 ± 0.02

NPs without PTX did not induce any toxicity at the tested concentrations

Stephanie Pollack

2.4

Conjugation of IR800CW Azide to PEBP-*b*-PBYP-*g*-PEG Allows for Observation of Polymer Retention and Biodistribution

ection t = 0 h

t = 2 h

Polymer Chemistry, Chem 466, Spring 2014, April 24, 2014

48 h

t = 72

h

t = 96 h

t = 1

NIR Optical Imaging Studies *in vivo* Confirm Long-term Pulmonary Retention for Sustained PTX Release

 $\mathbf{A}_{\mathbf{M}} \mid \mathbf{T}_{\mathbf{U} \ \mathbf{N} \ \mathbf{I} \ \mathbf{V} \ \mathbf{E} \ \mathbf{R}} \mathbf{A}_{\mathbf{S} \ \mathbf{I} \ \mathbf{T} \ \mathbf{Y}}^{\mathbf{A}}$

Bioluminescence is Visualized from OS-O Cells In Vivo

140404_TG-AS1-024E OS-O at 1 week and 9 weeks

2.2e+003 -1.5e+003 -766.67 _50.00

140404_TG-AS1-024C OS-O with and without amputation at 9 weeks

A few functional polymer chemistry goals:

- Antimicrobial nanoparticles for infectious disease treatment
- Chemotherapeutic nanoparticles for treatment of osteosarcoma lung metastases
- Engineering polymers derived from natural products
- Anti-biofouling and anti-icing coatings
- Advanced photoresist technologies

Idealized Polymer Life Cycle

Challenges for Materials for Orthopedic Applications

www.ceessentials.net

www.plastemart.com

http://ajs.sagepub.com

Metal materials:

- Mismatch with mechanical properties of bone (Young's moduli, *E*, are ~100 GPa vs. ~20 GPa)—stress-shielding, osteopenia
- Permanent implantation, unless secondary surgical removal is performed
- Degradable polymers:
 - Insufficient mechanical properties (*E ca*. 0.1-5 GPa)
 - Corrosive/inflammatory degradation products

Compact Bone & Spongy (Cancellous Bone)

http://en.wikipedia.org/wiki/Osseous_tissue

http://yovia.com/blogs/1milliontrees/files/2009/06/dancin-tree.jpg

Among Nature's supportive/engineering construction materials:

- Bone—complex composite of osseous tissue as the supportive matrix—hydroxyapatite (mixture of collagen (proteins) and minerals) (*E ca.* 20 GPa)
- Plants, cellulose (*E ca.* 10 GPa)
- Also crustacean exoskeletons, etc. (e.g., polysaccharides, silicas)

Orthopedic Degradable Polymer Materials Design

- Cellulose as a model material
- Good mechanical properties
 - 1,4-β-D-glucose linkages allow interchain packing and crystallization
 - Intermolecular H-bonding adds to the mechanical integrity
 - ➢ E ca. 10 GPa
- Design: Replace the glycosidic linkages with bonds that can be hydrolyzed more readily, in the absence of cellulases

http://upload.wikimedia.org/wikipedia/commons/c/c3/Cellulose_strand.jpg

Cellulose: A polyacetal of glucose

Synthetic Target: A polycarbonate of glucose

- Cellulose as a model material
- Design: Replace the glycosidic linkages with bonds that can be hydrolyzed more readily acetal-type carbonates
- Good mechanical properties are expected
- Hydrolytic degradation will produce glucose plus CO₂

Orthopedic Degradable Polymer Materials Design

- Polyhydroxyl natural products as starting materials (monomers)
- Polyhydroxyl natural products as hydrolytic degradation products
- Glucose is an energy source
 - Quinic acid has growth-promoting properties and is a chiral starting material for pharmaceuticals
- Rigid cyclic or bicyclic backbones

Interchain H-bonding

O´ Besset, C. J.; Lonnecker, A. T.; Streff, J. M.; Wooley, K. L. *Biomacromolecules*, **2011**, 12(7), 2512 K. L. Wooley, C. Besset, A. Lonnecker, "Degradable Polycarbonates from Polyhydroxy Natural Products", *Patent App. No. PCT/US2011/56204*, October 13, 2011

Poly(quinic acid carbonate)s - Overview

Poly(quinic acid thioether-*co*-carbonate) Networks

Thiol Composition and Structure Tune Network Properties

- DMA behavior characteristic of crosslinked thermosetting polymers
- Increased functionality of thiol increases CLD (decreases toughness)
- Increased length and flexibility of thiol decreases T_q

Hydrolytic Degradation of 1,2-EDT-co-TAQA

Hydrolytic degradation studies of 1,2-EDT/TAQA were performed in phosphatebuffered saline solution (pH 7.4, 37 °C, 60 rpm)

- Swelling increased suddenly at 13 wks
- Mass loss was observed at 15 wks and reached ca. 25%
- No changes in surface contact angle
- Degradation by bulk erosion

Hydrolytic Degradation of 1,2-EDT-co-TAQA

Link, L. A.; Lonnecker, A. T.; Hearon, K.; Raymond, J. E.; Maitland, D. J.; Wooley, K. L. "Photo-crosslinked Poly(thioether-*co*-carbonate) Networks Derived from the Natural Product Quinic Acid", *Chem. Mater.*, under revision.

Current Status for Wooley Group Natural Product-based Polymers

A few functional polymer chemistry goals:

- Antimicrobial nanoparticles for infectious disease treatment
- Chemotherapeutic nanoparticles for treatment of osteosarcoma lung metastases
- Engineering polymers derived from natural products
- Anti-biofouling and anti-icing coatings
- Advanced photoresist technologies

Treacherous Terrain-based Anti-fouling Surfaces: Hybridization of molecular architectures, compositions, and dimensions

Hydrophobic, low surface energy, crosslinkable polymer Complex Morphology Leads to:
➤ Topography/Texture (nm + µm)
➤ Patchy Composition
➤ Hydrophobic + Hydrophilic
➤ Flexible/Dynamic + Rigid
➤ Differential Surface Energies

Secreted protein "glue" must adhere to the surface for the organism to thrive

The proteins are nanoscale, therefore the coating surface features should also be nanoscale in dimension to intercept/inhibit adhesion

(Algae spore image courtesy of AMBIO)

Hydrophilic, water soluble polymer

Nanoscopically-resolved morphological and topographical surface domains composed of crosslinked networks

- Synthesized by crosslinking HBFP with diamine-PEG and diamine-PDMS
- By incorporation of three classes of anti-fouling polymers, the ternary system is expected to take advantage of each of their unique properties
- The key challenge is to determine the optimal proportions of each component

HBFP-PEG-PDMS Ternary Coatings Physicochemical Surface Analysis

 Surface force spectroscopy demonstrates unique surface properties present on the surface of the ternary coatings with raised lattices of HBFP & PDMS and lowered regions of PEG

HBFP-PEG-PDMS Ternary Coatings Navicula incerta Fouling Study

HBFP-PEG-PDMS Ternary System

PDMS

wt%

16.5

28.7

37.5

PEG

50

PD 25

PD 50

PD 75

HBFP

wt%

57

50

44

PEG

wt%

28.7

25

22.4

PEG

wt%

16.5

14.3

12.5

PEG

25

PD 25

PD 50

PD 75

HBFP

wt%

67

57

50

Lower initial density of settlement than HBFP-PEG binary system

Percent removal of diatoms on the PEG 75 series are comparable or better than for the binary systems

w/Gemma Cone, John Finlay, Sophie Hill, Maureen Callow, James Callow

PEG

75

PD 25

PD 50

PD 75

HBFP

wt%

50

44

40

PDMS

wt%

14.3

25

33.6

HBFP-PEG Binary System

Imbesi, P. M.; *et al. Polym. Chem.*, **2012,** *3*, 3121-3131.

HBFP-PEG Coatings Towards Anti-Icing Applications

wt % PEG

ĀМ

With 200 wt% H₂O added, HBFP-PEG films (cast and cured in DSC pans) depress the freezing point of bound water by 25-30 ° C and free water by 7-11 ° C

As the *wt*% PEG increases, the T_m of bound water increases, and the T_m of free water decreases

A few functional polymer chemistry goals:

- Antimicrobial nanoparticles for infectious disease treatment
- Chemotherapeutic nanoparticles for treatment of osteosarcoma lung metastases
- Engineering polymers derived from natural products
- Anti-biofouling and anti-icing coatings

Advanced photoresist technologies

Negative-tone Resist with Vertical Alignment of Molecular Brushes as Ultra-high Resolution Macromolecular Pixels

Vertical alignment

[w/Jim Thackeray and Pete Trefonas, Dow Electronic Materials]

RAFT and ROMP Approach to Block Brush Photoresist Polymers

Electron-beam Lithography (EBL) of Block Brush Terpolymer Chemically-amplified Resists (CARs)

Pattern: 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 nm line/500 nm space; scale bar: 500 nm

EBL Results for Block Brush Terpolymer CARs

Negative-tone bottle-brush photoresist IP filed November 2012; Extension to positive-tone photoresist systems, IP filed September 2013

Acknowledgements

The Wooley Group Spring 2014

* Also pictured are Prof. Dr. Katharina Landfester (Max Planck Institute for Polymer Research), Dr. Karl Haider and Dr. Don Wardius (Bayer MaterialScience). RENTRACE

Parth Shah Justin Smolin Carolyn Cannon Matthew Panzer Patrick Wagers Wiley Youngs

Kristin Tiemann **David Hunstad** Tolulope Aweda **Suzanne Lapi**

Laura Nelson Dennis Hughes

Mark Lenox

Jim Thackeray Pete Trefonas

Gemma Cone

John Finlay

Jim & Maureen Callow

